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The deformation of a moving spherical viscous drop subject to axisymmetric 
perturbations is considered. The problem is formulated using two different variations 
of the boundary integral method for Stokes flow, one due to Rallison & Acrivos, and 
the other based on an interfacial distribution of Stokeslets. An iterative method for 
solving the resulting Fredholm integral equations of the second kind is developed, 
and is implemented for the case of axisymmetric motion. It is shown that in the 
absence of surface tension, a moving spherical drop is unstable. Prolate perturbations 
cause the ejection of a tail from the rear of the drop, and the entrainment of a thin 
filament of ambient fluid into the drop. Oblate perturbations cause the drop to 
develop into a nearly steady ring. The viscosity ratio plays an important role in 
determining the timescale and the detailed pattern of deformation. Filamentation of 
the drop emerges as a persistent but secondary mechanism of evolution for both 
prolate and oblate perturbations. Surface tension is not capable of suppressing the 
growth of perturbations of sufficiently large amplitude, but is capable of preventing 
filamentation. 

1. Introduction 
The structure and dynamics of viscous drops has received considerable attention 

in recent years (Harper 1972; Clift, Grace & Weber 1978; Rallison 1984; Zinemanas 
& Nir 1988). Interest in the subject is primarily motivated by the need to understand 
the rheology of emulsions, to delineate the mechanics of heterogeneous mixing, and 
to analyse the deformation of biological cells. Additional impetus for research has 
been provided by the observation that aggregates of microscopic particles and micro- 
organisms show behaviour similar to that of suspended homogeneous viscous drops 
(Kojima, Hinch & Acrivos 1984). This renders the drops convenient prototypes for 
studying the formation or destruction of structure in dispersed systems. 

One of the most important problems within the general area of drop mechanics 
concerns the shape of drops moving under the action of gravity. Hadamard and 
Rybczynski showed that a t  zero Reynolds number, the flow associated with the 
spherical shape satisfies all of the necessary boundary conditions for steady motion 
independently of surface tension (Batchelor 1967, p. 235). Extending these results, 
Kojima et al. (1984) showed that steady drops with a slightly spherical simply 
connected shape may not exist, suggesting that moving drops are either spherical or 
highly deformed. Since there appears to be no theoretical or experimental evidence 
for steadily moving highly deformed drops, it appears that the spherical shape is the 
only possible steady configuration. Before the spherical drop can be accepted as a 
physically viable configuration however, the stability of its motion must be assessed. 

Important information on the stability of a moving viscous drop was recently 
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provided by Kojima et al. (1984). These authors observed the behaviour of a heavy 
drop falling into a pool of a lighter, miscible fluid, and reported a sequence of stages 
in the drop evolution. In  the first stage, soon after entrance, the drop developed an 
elongated tail; in the second stage, the tail separated from the main body of the drop, 
and the drop flattened and developed an intrusion a t  the rear stagnation point ; in the 
third stage, the intrusion grew in size, producing an axisymmetric, expanding drop 
ring; in the last stage, the ring became unstable and dispersed into the ambient fluid. 
Thus, the experiments of Kojima et al. (1984) indicated that moving viscous drops 
are unstable when not protected by surface tension. 

Kojima et al. (1984) undertook a theoretical investigation of the observed drop 
behaviour in the context of linear stability analysis and slender-body theory. They 
demonstrated that in the absence of surface tension, the spherical drop is indeed 
unstable to perturbations of small amplitude. Furthermore, they showed that the 
character of the evolution strongly depends on the type of initial perturbation. 
Unfortunately, these results were not able to  explain all observed stages in the drop 
evolution, more specifically, the formation of drop rings from initially prolate drops. 
Even including weak inertial effects could not resolve all of the discrepancies between 
theory and experiment in a satisfactory manner. I n  a more recent study, Griffiths 
(1986) studied the evolution of thermals rising in quiescent fluid. He observed that 
the thermals became unstable, developing into axisymmetric drop rings, and noted 
that the effect of temperature-dependent viscosity plays a dominant role in the 
evolution. When repeating the experiments with isothermal drops, Griffiths obtained 
stable motion, in contrast to Kojima et al. (1984). The reason for this discrepancy is 
not known. 

Overall, the experiments of Kojima et al. (1984) and Griffiths (1986) raised a 
number of fundamental questions regarding the precise mechanisms for drop 
evolution. In  this paper we seek to obtain insight into these questions by studying 
the nonlinear instability of spherical drops. Our objectives are to probe the possible 
modes of deformation, to examine the significance of nonlinearities, and to assess the 
sensitivity of the evolution to  the initial drop configuration, surface tension, and the 
ratio of the viscosity between the drop and the ambient fluid. 

Our analysis relies on numerical solutions of the Stokes equation based on two 
different variations of the boundary-integral method for Stokes flow. The first 
variation, developed by Rallison & Acrivos (1978), uses the boundary-integral 
equation on either side of a fluid interface to represent the flow in terms of a 
combined distribution of Stokeslets and derivative singularities. The second 
variation is based on the representation of the flow by means of a interfacial 
distribution of Stokeslets. Both of these methods lead to Fredholm integral 
equations of the second kind whose numerical solution requires comparable 
computational effort. The second method, however, has the additional advantage 
that it is capable of producing the whole velocity field directly and solely from the 
computed Stokeslet distribution. 

To solve the Fredholm integral equations resulting from the boundary-integral 
formulations, we develop an iterative numerical procedure. The main advantage of 
this procedure is that it requires O ( P  x M )  numerical operations, compared with 
O(N3) operations required by methods that are based on matrix inversions. Here N 
is the number of surface elements, and M is the number of necessary iterations, which 
in most cases is considerably less than N .  Other advantages include ease of 
implementation and straightforward high-order discretization. The success of the 
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FIGURE 1. Defining sketch for an axisymmetric drop moving in an infinite ambient fluid. 

proposed iterative method is due to the fact that the derived integral equations have 
convergent Neumann series, a property which is theoretically proven in Appendix A. 

While this paper was under review, the author received a note by C. J. Koh & 
L. G. Leal, entitled ‘The stability of drop shapes for translations a t  zero Reynolds 
number through a quiescent fluid ’. The subject of this note is identical to that of the 
present study. The formulation of the problem is based on the method of Rallison & 
Acrivos, while the procedure of solution is based on matrix inversion (see also Stone 
& Leal 1989). The results of C. J. Koh & L. G. Leal are in excellent agreement with 
those presented in this paper. 

The rest of our paper is structured as follows. In  $2 we describe the basic flow 
configurablon for the spherical drop, summarize the main conclusions of linear 
stability theory, formulate the complete nonlinear problem as an integral equation, 
and develop a numerical method of solution. In  $ 3  we present and discuss our 
calculations. Section 4 contains concluding remarks. 

2. Analysis 
2.1. The spherical drop 

Our basic flow configuration consists of a spherical drop moving under the influence 
of gravity in an ambient fluid of infinite extent. At the outset, we reduce all variables 
using as lengthscale the drop radius a ,  and as timescale pJagAp, where Ap is the 
density difference p2-p1. A subscript 1 or 2 denotes the ambient or drop fluid, as 
indicated in figure 1. The speed of the drop is 

where h is the viscosity ratio p z / p 1 .  The acceleration of gravity is in the direction of 
the negative x-axis. In  the cylinder polar coordinates (x, cr, 4) of figure 1, and in a 
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frame of reference moving with the drop, the axial and radial components of the 
velocity in the interior of the drop are 

The azimuthal component of the vorticity is 

(2 .2a,  b) 

(2 .2c)  

Note that the velocity field inside the drop is identical to that inside Hill's spherical 
vortex, and thus it satisfies the complete Navier-Stokes equations. In  spherical polar 
coordinates with origin a t  the centre of the drop, the velocity field outside the drop 
is given by 

h + ( 2 . 3 ~ )  

(2 .36)  

One may recognize the far-field component, along with a Stokeslet with r-'decay, and 
a potential dipole with r-3 decay, both oriented along the x-axis. The azimuthal 
component of the vorticity is exclusively due to the Stokeslet, and is given by 

( 2 . 3 ~ )  

It is well known that above flow field satisfies continuity of velocity and stress across 
the drop surface, independently of the magnitude of surface tension (Batchelor 1967, 
p. 235).  

2.2. Xmall deformation theory 
Kojima et al. (1984) analysed the evolution of small axisymmetric perturbations on 
the spherical drop a t  low Reynolds numbers. They studied the motion as a function 
of the form of the initial perturbation, viscosity ratio A,  and surface tension y ,  the 
latter expressed by the inverse capillary number N = y/U,ul. Specifically, they 
expanded the drop contour in a series of Legendre polynomials and, after linearizing 
the equations of motion and boundary conditions, they derived an infinite system of 
ordinary differential equations for the evolution of the coefficients in this series. Their 
analysis revealed that, in the absence of surface tension, the drop is unstable to 
infinitesimal perturbations. Prolate or oblate disturbances lead to formation of 
growing protrusions or intrusions a t  the rear stagnation point of the drop. The front 
of the drop always regains its unperturbed spherical shape. The timescale of the 
deformation is approximately proportional to 1 + A .  A small amount of surface 
tension is capable of suppressing the growth of small perturbations whose amplitude 
is commensurate with 1/N. The viscosity ratio has little effect on the gross features of 
drop deformation. Furthermore, Kojima et al. showed that including weak inertial 
effects introduces a slight bias toward oblate-type evolutions, in the sense that 
slightly prolate perturbations amplify through the development of intrusions rather 
than protrusions at the rear of the drop. 
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2.3. Formulation as an  integral equation 

The theory of Kojima et al. (1984) is valid in the initial stages of the instability, as 
long as the drop maintains a slightly deformed shape. To describe the well-advanced 
stages of the evolution, and to examine the motion subject to perturbations of finite 
amplitude, we pursue an alternative formulation, one that is based on integral 
representations for Stokes flow. Below, we summarize the method of Rallison & 
Acrivos (1978), and then we present a new formulation. 

In a study of drop deformation in uniaxial extensional flow, Rallison & Acrivos 
(1978) derived an integral equation for the evolution of the interface between two 
viscous fluids. Briefly, they applied the boundary-integral equation 

on either side of the interface, a = 1,2 (figure l),  and requiring continuity of velocity 
across the interface, they derived the following equation for the interfacial velocity : 

(2.5) 

In the above equations, ii is the unit vector normal to the interface pointing into fluid 
1 ,  I,, indicates the principal-value Integral, ,8 is a dimensionless parameter defined 
as p = (1 - A ) / ( l  + A ) ,  and Af is the difference in surface stress across the fluid 
interface. This is equal to Af = (a,-a,) ii where G is the modified stress tensor 
defined with respect to the modified pressure P = P - p i g  x (Batchelor 1967, p. 
237). The tensors S and T are the Green’s functions for the velocity and the stress 
respectively. Thus, ui = S,  a), and utk = p q j k  aj express the velocity and stress field 
produced by a point force of strength Srca,, located a t  the point xo. For unbounded 
three-dimensional flow, these tensors have the explicit forms 

(2.6a, b)  

where 2 = x - x,,. 
Specifying AL reduces (2.5) into a Fredholm integral equation of the second kind 

for the interfacial velocity. In the special case where the viscosities of the two fluids 
are equal ( A  = 1 or p = 0) ,  the second term on the right-hand side of this equation 
vanishes, and the velocity is simply expressed as an integral over the fluid interface. 
Once the interfacial velocity has been computed, by solving (2.5), the whole velocity 
field may be constructed by reverting to (2.4). To compute the first integral on the 
right-hand side of this equation, however one must know the surface stress f on either 
side of the fluid interface. This may be computed by applying (2.4) on one side of the 
interface, and then, by solving the resulting Fredholm integral equation of the first 
kind for$ The surface stress on the other side of the interface is then immediately 
found from the known discontinuity in the interfacial surface stress A$ Thus, it 
appears that a complete computation of the flow field requires the solution of two 
integral equations, one of the second for the interfacial velocity, and the other of the 
first kind for the interfacial stress. 

Solving the above integral equation for the boundary surface stress, however, is 
not necessary for the computation of the flow field. Indeed, the reciprocal theorem 
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states that for a point xo located in the interior of fluid 1, the following identity is 
true : 

r r 

Applying (2.4) for a = 1 ,  and combining with (2.7) gives 

Effectively, the exterior flow is represented as a combined single-layer and double- 
layer potential with known density distribution functions. For a point x, located in 
the interior of fluid 2, we write the identity 

(2.9) S,n(x)  Sij(X, xo) U ( x )  -A %(X) T&, x,) +ux) U ( x )  = 0. I, 
Applying (2.4) for a = 2, and combining with (2.9) we obtain 

Thus, the interior flow is also represented as a combined single-layer and double- 
layer potential with known density distribution functions. As the point x, 
approaches the interface S ,  the double layers in (2.8) and (2.10) may be written in 
terms of their corresponding principal values, and both (2.8) and (2.10) reduce to the 
Rallison & Acrivos equation (2.5). 

In  an alternative formulation, we represent the velocity in terms of a single-layer 
distribution of Stokeslets over the fluid interface 

(2.11) uz(x0) = j-ssij(xo> x) Q j ( 4  dX(x), 

where q is the density of the distribution. The associated stress field is given by 

(2.12) 

The surface stress on either side of the interface is equal to 

(fd*(xo) = Uik(X0) f$c(xo) = P a ~ r i , ( X , )  q & O >  x) q,(x) U ( x ) ,  (2.13) 

where a = 1,2.  As the interface is crossed, the integral on the right-hand side suffers 
a discontinuity equal to  - 8nq. Introducing the principal-value integral, equal to the 
mean value of the integral on either side of the interface, we rewrite the two limiting 
values of the surface stress as 

(2.14b) 
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Subtracting these equations, we find 

When the viscosities of the two fluids are equal ( A  = 1 or p = 0 ) ,  we obtain 

This renders (2.11) equivalent to (2.5). In  the general case of unequal viscosities, 
(2.15) constitutes a Fredholm integral equation of the second kind for q .  Solving for 
q allows the direct computation of the velocity field within either fluid, using the 
defining expression (2.1 1).  

Comparing the above two formulations, we find that the second one offers two 
significant advantages. First, it produces the velocity field solely from a single-layer 
Stokeslet distribution. Second, this formulation is based on the integral repre- 
sentation (2.11) which is valid both inside and outside the drop. Thus, it allows the 
computations of the velocity a t  a point, without requiring information on whether 
this point is located inside or outside the drop. 

Before proceeding further with the integral equations (2.5) and (2.15), it is 
imperative to examine the uniqueness of their solution. For this purpose, we consider 
the corresponding homogeneous equations, 

( 2 . 1 6 ~ )  

m o )  = -6dxo) T,,,(xo, q j w  dS(x) (2.16 b) 

and inquire whether they have non-trivial characteristic solutions. Note that (2.16a) 
and (2.16b) are adjoint to each other, and thus they have conjugate eigenvalues and 
the same number of eigensolutions. Now, it is well known that when the drop 
becomes a frictionless bubble, h = 0 or p = 1,  these equations have a single 
eigensolution, and when the drop becomes a solid particle, h = 03 or p = - I ,  they 
have six independent eigensolutions (Ladyzhensakya 1969, p. 60). Power (1987) 
showed that in the intervening region 0 < h < 03 or - 1 < p < 1,  ( 2 . 1 6 ~ )  and (2.16b) 
have no eigensolutions (see also Appendix A). This ensures that both (2.5) and (2.15) 
have unique solutions. 

To complete our formulation we must define a constitutive equation for the 
discontinuity of the surface stress A$ Assuming that the surface tension is constant 
along the fluid interface, we write 

4z lpv 

Af = (Apgx+yV * r i ) r i .  (2.17) 

Substituting into (2.5), and reducing lengths by the equivalent drop radius a, 
velocities by gApa2/p1, and stresses by gAp,  we obtain 
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r is the inverse Bond number, r = y/a2Apg, related to the inverse capillary number 
N = y/pUby f = uV(1 +A)/(6+9A). Furthermore, substituting (2.17) into (2.15), we 
find 

The problem is reduced to solving (2.18) or (2.19) for the interfacial velocity or for 
the density of the distribution density q. 

2.4. Numerical solution of the integral equations 
In this section we develop a numerical procedure for solving the integral equations 
(2.18) or (2.19) for the case of axisymmetric motion. To facilitate our discussion, we 
rewrite (2.18) in the equivalent form 

(2.20) 

where the integrals A and B represent single-layer and double-layer potentials. 
The standard procedure for solving this equations, employed by all previous 
investigators, is by means of boundary discretization, followed by collocation and 
matrix inversion (Delves & Mohamed 1985). Briefly, this entails (i) discretization of 
the drop surface into a set ofN boundary elements, (ii) approximation of the velocity 
distribution over each element with a polynomial function, and (iii) computation of 
the polynomial coefficients. This last step is effected by applying the equation at  
selected collocation points on the drop surface. In  this manner, the problem is 
reduced to solving a dense system of linear equations of O(N2), requiring O(W) 
arithmetic operations, and O(F) computer storage. 

Motivated by the success of iterative methods for solving Fredholm integral 
equations of the second kind for problems of potential flow (Baker, Meiron & Orszag 
1982), we develop an alternative method of solution, one that is based on successive 
iterations. Our strategy is to assume an arbitrary interfacial velocity distribution, to 
compute the right-hand side of (2.20), and then to replace that originally assumed 
with the newly computed velocity distribution. The basic advantage of t,his method 
is that it requires O(N2 x M )  arithmetic operations, where M is the number of 
iterations. When M is less than N, this results in significant savings in the cost of the 
computations. Other important advantages include ease of implementation, and 
efficiency in handling the singular integrals A and B. To ensure the success of our 
iterative method of solution, in Appendix A we show that the Neumann series of the 
integral equations (2.18) and (2.20) are convergent by proving that the corresponding 
homogeneous equations (2.16a, b )  do not have any real or complex eigenvalues with 
magnitude less than one (Korn & Korn 1968, p. 497). 

Proceeding with the numerical implementation, we note that both of the integrals 
in (2.20) are singular, their integrands exhibiting a logarithmic and a polar 
singularity as x + xo. The former must be treated numerically, but the latter may be 
removed by using the identity 
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(this may be derived by applying the boundary-integral equation (2 .4 )  for a uniform 
flow in the interior of S, that is, with u equal to a constant and f proportional to the 
normal vector). We thus write 

Bj(Xo) /: Ui(X) !&(ff) &(X) dS(x) cj(Xo) -47CUj(X0), (2 .22)  

where (2.23) 
Js 

The integral on the right-hand side of (2 .23)  is computed using the six-point 
Gauss-Legendre quadrature. 

For axisymmetric flow, we perform the integration in the azimuthal direction to 
express the above integrals in terms of complete elliptic integrals of the first and 
second kind. Referring to cylindrical polar coordinates we write 

A,(x,,) = - ( x + T V  * ri)Map(x, x,) Ap(x) dZ(x), ( 2 . 2 4 ~ )  J: 
ca(X0) = S, {azla(x, xo) [U~(X)-~~(XO)I +aaza(X, x0) 

-Pa&x? xo) UZ(XO)> fqx)  d W  (2 .246)  

where the integration is along the contour of the drop in a meridional plane. Greek 
subscripts take the values (1, 2 )  for the (2 ,  a) directions respectively. It was necessary 
to introduce three new matrices M, 9, and p, whose elements are given in appendix 
B, in a form suitable for computer implementation. 

In  our numerical procedure, we trace the contour of the drop with a set of N +  1 
marker points, and approximate the shape of the drop with a set of circular arcs 
passing through successive trios of marker points (figure 1) .  The curvature of the drop 
over an arc is computed by 

(2 .25)  

where j is the unit vector in the a-direction, and the plus or minus sign reflects the 
counterclockwise or clockwise arc orientation. To compute A ,  we subtract off, and 
integrate analytically the logarithmic singularity over the arc hosting a marker 
point. To compute C, we evaluate M - n, 9 - n, and p - n at the Gaussian points over 
each arc, multiply them by the corresponding Gauss-Legendre weights, and save 
them in a N x N x m matrix (m is the number of the quadrature points). We then 
assume a trial velocity a t  the marker points, approximate the velocity distribution 
over each are with a parabolic function with respect to arc length, and compute the 
velocity at the quadrature points. Finally, we compute C simply by multiplying its 
kernel with the velocity at  the quadrature points and summing. Having computed 
A and C, we calculate the new values of the velocity a t  the marker points, and repeat 
the procedure until the difference in the velocity between the two successive iterates 
at all points differs only by a predetermined small number. The above strategy allows 
the evaluation of the integral C for different velocity distributions, without requiring 
the costly computation of the kernel each time. Once the interfacial velocity is 
obtained, the position of the marker points is advanced using the modified Euler's 
method. 

To accelerate the convergence of the iterations, we set the initial guess for the 
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velocity equal to  the converged velocity a t  the previous time step. In our 
computations, we found that the required number of iterations is strongly dependent 
on the viscosity ratio and the specified accuracy, while i t  is quite insensitive to the 
number of boundary elements N .  For instance, for absolute accuracy of lo-', the 
number of necessary iterations varied from eight for h = 0.50, to forty for h = 0.10 
and 10. 

To solve (2.19), we devise a procedure similar to that described above. Specifically, 
to compute the singular integral on the right-hand side of (2.19), we rewrite it in the 
form s, h&o, x) [%(XI f i k ( X 0 )  --Qk(XO) fw1 d W  -47C&o) (2.26) 

where the integration is over the drop contour in a meridional plane. The matrix h 
is given in Appendix B. The integral in (2.26) is regular, and is evaluated using the 
Gauss-Legendre quadrature. 

The need for point redistribution arises when regions of high curvature develop, 
and when the marker points move far apart from each other or cluster a t  regions of 
low curvature. To maintain an acceptable point distribution which is capable of 
resolving the fine scales of the motion, but yet does not require an excessive number 
of points, we use an adaptive method of point redistribution based on three criteria. 
First, when the total angle subtended by an arc exceeds a specified maximum, we 
introduce two points evenly spaced along the arc, and remove the middle point. 
Second, when the separation between two points becomes excessively large, we 
introduce a point in the middle between these points. Third, when the separation 
between two points becomes smaller than a pre-established minimum, we eliminate 
these points, and introduce a new single new point located in the middle between the 
old points. This last operation is permissible only when the resulting point 
distribution does not violate the first two criteria. In  all cases, the necessary 
interpolations are performed over the two arcs that are defined on either side of the 
segment connecting two adjacent points. 

In  the course of computations with zero surface tension, we observed the 
development of regions of high curvature, requiring a locally dense distribution of 
points. To maintain the number of points moderate, we allowed the formation of 
corners a t  these regions. Test calculations showed that this simplification did not 
have noticeable effect on the overall dynamics of the motion. The maximum number 
of points in our computations was 100 for fluids of equal viscosity, and 50 for fluids 
of different viscosity. When surface tension was equal to zero, the computations 
proceeded smoothly. When surface tension was finite, however, numerical insta- 
bilities arose, causing the interface to obtain a saw-tooth shape. These instabilities, 
similar in nature to those observed by other authors (Rallison 1984), were suppressed 
by decreasing the time step to a sufficiently low level. 

To monitor the accuracy of the calculations, after each time step we computed the 
drop volume. The maximum change in this volume was less than 0.20 % for A = 1 ,  
and less than 1 % for A + 1. All of our computations were carried out using the 
formulation of Rallison & Acrivos. The instantaneous velocity field and streamline 
patterns were computed using the method of Stokeslet distribution. All computations 
were performed on the CRAY/XM-P computer of the San Diego Supercomputer 
Center. A complete run required approximately 30 min of CPU time. 
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3. Nonlinear drop evolution 
In  this section we study the nonlinear evolution of a perturbed spherical drop 

having an initial shape of a prolate or an oblate spheroid. The initial contour of the 
drop in a meridional plane is described by 

r = a[ 1 + ~P,(cos O ) ] ,  (3.1) 

where Pz is the second-degree Legendre polynomial, and a is a function of E such that 
the drop volume is equal to  $7~. In this fashion, all lengths are reduced by the 
equivalent drop radius a = (3V/47~)5. The evolution of the drop is a function of the 
perturbation amplitude E ,  the inverse Bond number r, and the viscosity ratio A. In  
our discussion, we pursue the motion in a frame of reference moving with the 
undisturbed drop velocity U (see 92.1). The unit of time is equal to  pJagAp. 

Figure 2 (a-i) illustrates the evolution of a drop subjected to a prolate perturbation 
of amplitude E = 0.200. The viscosity ratio h is equal to one, and the surface tension 
is equal to zero. The dotted contours in frames 2 ( M )  represent predictions of 
linear theory. Overall, we discern three stages in the evolution. In  the first stage, 
illustrated in frames ~ ( u - c ) ,  the front of the drop tends to recover its undisturbed 
spherical shape, whereas the rear of the drop is extended under the action of the local 
stagnation-point flow. During this stage, fluid from the front of the drop is convected 
towards the rear of the drop. Linear theory is remarkably accurate during this stage 
of deformation. In  the second stage, illustrated in frames 2 (d-f ), fluid escapes from 
the main body of the drop into a developing tail. At the same time, ambient fluid is 
entrained into the drop near the base of the tail. Linear theory becomes increasingly 
less accurate during this stage of deformation. In  the third stage, depicted in figure 
2(g-i), the tail is stretched by the external flow, reducing into an elongated fluid 
thread. The ambient fluid that has been entrained into the drop is convected by the 
internal flow in a spiral pattern. The calculations strongly suggest that a t  large times, 
the drop reaches an asymptotic configuration. This is composed of an almost 
spherical body, a thin filament of ambient fluid that circulates inside the drop, and 
a tail that suffers continuous elongation. Inspection of frame 2 ( i )  indicates the 
development of a spike a t  the rear of the drop, right above the base of the tail. In 
reality, this is a thin cylindrical filament of drop fluid which is passively convected 
by the external flow. It is worth noting that in the frame of reference of figure 2,  the 
drop moves downward a t  a slow rate, implying that in a static frame of reference, the 
drop slightly decelerates during its evolution. 

To illustrate the effect of viscosity ratio, in figure 3(a,  b )  we present two 
characteristic stages in the evolution of a drop with B = 0.200, A = 5,  and r = 0. 
These may be compared with the corresponding stages for h = 1, shown in figures 
2 (f) and 2 (h) .  We observe that increasing A increases the size of the developing tail, 
and causes the entrained ambient fluid to penetrate the drop farther away from the 
axis of motion. Furthermore, increasing A suppresses or delays drop filamentation. 
To further demonstrate the effect of the viscosity ratio, in figure 4 we present an 
advanced evolution stage for A = 0.10, E = 0.20, and r = 0. We note that the size of 
the tail is significantly reduced with respect to that for A = 1. Furthermore, we note 
the formation of a pronounced spike near the base of the tail, a precursor of drop 
filamentation. 

Let us now examine the motion in a more quantitative fashion. For convenience, 
we characterize the drop deformation by a single variable d ,  equal to the size of the 
drop along the axis of motion. Linear theory predicts that d increases exponentially 
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FIGURE 2(u-f) .  For caption see facing page. 

in time, with a time constant proportional to a( 1 + h) /U .  Maintaining this scaling for 
lack of a better alternative, in figure 5 we plot d as a function of the non-dimensional 
time t* = tU /a ( l+h) ,  for E = 0.20, r = 0, and three viscosity ratios h = 0.10, 1.0, 
and 5.0 (solid lines). In  all cases, we observe an initial exponential growth followed 
by a linear growth with slope very close to A+ 1 .  This reflects the fact that, a t  large 
times, the tail of the drop is convected by the external flow as a passive element. In 
figure 5, with dotted lines, we also show predictions of linear theory. This is accurate 
approximately up to t* = 2.0, while the deformation of the drop is still moderate, but 
fails at later times. 

Proceeding, we examine the effect of surface tension. I n  figure 6(a-e) we present 
characteristic stages in the evolution of an initially prolate drop with E = 0.20, for 
r= 0.050, and for fluids with equal viscosity h = 1. The main features of the 
evolution are similar to those for zero surface tension presented in figure 2. It is clear, 
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FIGURE 2.  The evolution of an initially prolate drop with E = 0.200, for viscosity .ratio A = 
,uz/,uI = 1 ,  and surface tension r= 0:  (a) t = 0, ( 6 )  8.0, (c) 15.0, (d) 20, (e) 25.0, (f) 30.0, (9) 
35.10, (h)  40.70, ( i )  50.20. The dotted contours indicate predictions of linear theory with origin at 
the centre of mass of the drop. 

FIGURE 3. Two characteristic stages in the evolution of an initially prolate drop of amplitude E = 
0.20, for viscosity ratio A = ,uz/,ul = 5.0, and surface tension r = 0: (a )  t = 76.50, ( 6 )  90.50. To 
assess the effect of increasing the viscosity ratio, (a )  should be compared with figure 2 ( f )  and ( b )  
with figure 2 (h) .  



14 C. Pozrikidis 

FIGURE 4. The drop shape at  t = 18.0 for viscosity ratio A = 0.10, surface tension r = 0, and for 
a perturbation of initial amplitude E = 0.200. 

however, that surface tension prevents entrainment of ambient fluid and prohibits 
drop filamentation. Calculations beyond the time of figure 6 ( e )  indicated that the tail 
breaks up into a number of small drops. Whether this behaviour is a consequence of 
a numerical instability or a result of a real capillary instability however, could not 
be resolved with confidence. Comparing our numerical results with predictions of 
linear theory (illustrated with dotted lines in figure 6 ( b ,  c ) ,  we see fair agreement a t  
small times, but severe discrepancies a t  intermediate and large times. This is not 
surprising, for linear theory predicts that a t  large times the drop returns to its 
unperturbed spherical shape, whereas our nonlinear calculation show continuous 
deformation. To further investigate the effect of surface tension, we carried out 
computations with r equal to  0.100, 0.200, and E = 0.200. In  the first case the 
perturbation grew as shown in figure 2, whereas in the second case, the perturbation 
decayed and the drop regained its unperturbed spherical shape. 

We now turn our attention to oblate perturbations, concentrating on the case 
E = - 0.200. In figure 7 (a-f) we summarize typical stages in the evolution of a drop for 
h = 1 and r = 0. The dashed lines indicate predictions of linear theory. As in the case 
of prolate perturbations, the evolution of the drop proceeds in three distinct stages. 
During the first stage, shown in frames 7(u-c),  a dimple develops at the rear of the 
drop, while the front of the drop recovers its unperturbed spherical shape. Linear 
theory is accurate up to the time of figure 7 ( b ) .  In  the second stage, shown in frames 
7 (d- f ) ,  ambient fluid is entrained into the drop along the axis of the dimple. In  this 
manner, the drop reduces into a ring. At the same time, a small filament of drop fluid 
develops right above the dimple. At large times, the drop reduces into a nearly 
symmetric steadily translating drop ring. I n  the frame of reference of figure 7,  the 
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FIGURE 5. The size of the drop in the streamwise direction, d ,  as a function of the non-dimensional 
time tU/a(h+ l) ,  this scaling suggested by linear theory. The initial amplitude of the perturbation 
is E = 0.200, and the surface tension r= 0. The dotted lines indicate predictions of the linear 
theory of Kojima et al. (1984) ; the slopes of the straight lines are equal to h + 1, corresponding to 
the tail being convected at  the undisturbed drop speed U. 

drop moves upward at a slow rate, implying that in a static frame of reference, the 
drop undergoes slight acceleration during its evolution. 

To illustrate the effect of h on the growth of oblate perturbations, in figure 8 we 
present a characteristic advanced stage in the evolution of a drop for 8 = -0.200, 
h = 5.0, ,nd r = 0. Superposed on the drop contour is the instantaneous streamline 
pattern. Comparing figure 8 to figure 7 shows that increasing h prevents drop 
filamentation, and causes a reduction in the amount of entrained ambient fluid. At 
large times, the drop is expected to reduce into an almost-steady drop ring similar 
to that developed for h = 1 .  Furthermore, in figure 9(a ,  b ) ,  we present two 
characteristic stages in the evolution of a drop for e = -0.20, h = 0.10, and r = 0. 
A notable new feature is the spherical-cap shape of the dimple developing a t  the rear 
of the drop (figure 9(a ) ) .  The high-viscosity fluid residing within this dimple is 
subjected to a local extensional flow, and thus it undergoes slow deformation. The 
low-viscosity drop fluid above the dimple undergoes intense filamentation. The 
instantaneous streamline shown in figure 9 (a) suggests that a t  large times, the drop 
reduces into a ring. 

To illustrate the effect of surface tension for oblate perturbations, in figure 10 (a-f) 
we present typical stages in the evolution of a drop for 8 = -0.200, h = 1,  and 
r = 0.050. The main features of the evolution are similar to those for r = 0, shown in 
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FIGURE 6. The effect of surface tension on the growth of prolate perturbations. The initial 
amplitude of the perturbation is E = 0.200, the viscosity ratio is A = puz/p, = 1, and the surface 
tension r = 0.050 : (a )  t = 0, ( b )  10.0, (c) 20.0, (d) 25.0, ( e )  30.70; this figure should be compared with 
figure 2.  The dotted contours indicate predictions of linear theory with origin a t  the centre of mass 
of the drop. 

FIGURE 7. The evolution of an initially oblate drop, with perturbation amplitude E = -0.20, for 
viscosity ratio A = pJpl = 1 ,  and surface tension r = 0:  (a )  t = 0, ( b )  8.0, (c) 15.0, ( d )  25.0, ( e )  35.0, 
(f) 45.0. The dotted contours indicate predictions of linear theory with origin at  the centre of mass 
of the drop. 
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FIGURE 8. The shape of the drop and instantaneous streamline pattern a t  t = 122.50, for viscosity 
ratio A 5.00, surface tension r = 0. The initial amplitude of the perturbation is E = -0.20. 

FIGURE 9. Two characteristic stages in the evolution of an initially oblate drop of amplitude E 

= -0.200, for viscosity ratio h = pz/,ul = 0.10, and surface tension r= 0 :  (a )  t = 10.80, ( b )  17.00; 
superimposed in the drop contour in (a )  is the instantaneous streamline pattern in a frame of 
reference moving with the undisturbed spherical drop speed U. 

figure 6. Linear theory erroneously predicts that the drop gains its spherical shape 
a t  large times. Our computations show that the asymptotic drop shape consists of a 
compact, nearly spherical drop that encloses a spike of entrained ambient fluid. As 
in the case of prolate perturbations, drop filamentation is prevented by the presence 
of surface tension. Further calculations showed that increasing r to 0.100, while 
maintaining = -0.200, stabilizes the drop, causing i t  to revert to its undisturbed 
spherical configuration. 

In the above discussion we presented results for two specific perturbation 



18 C. Pozrikidis 

I 
I 

FIGURE 10. The effect of surface tension: evolution of an initially oblate drop of amplitude 
E = -0.200, for viscosity ratio A = ,u2/,u, = 1, and r = 0.050: (a) t = 0, ( b )  15.0, (c) 30.0, (d )  40.0, 
(e) 50.0 (f) 61.50. This figure should be compared with figure 6. The dotted contours indicate 
predictions of linear theory with origin a t  the drop centre of mass. 

amplitudes, e = 0.200. Calculations with different amplitudes revealed behaviour 
similar to that depicted in figures 2-10. As an example, in figure 11 (a, b) we present 
two advanced stages in the evolution of an oblate perturbation of initial amplitude 
e = -0.300, for r = 0, and 0.050. For oblate perturbations, decreasing e reduces the 
size of the ejected tail as well as the amount of entrained fluid, and reduces the 
diameter of the developing drop ring. Furthermore, decreasing 6 reduces the 
magnitude of surface tension necessary for the perturbation to  decay, and the drop 
to regain its spherical shape. 

4. Closing remarks 
We performed a parametric study of the nonlinear instability of a moving viscous 

drop. Our calculations revealed three basic mechanisms in the drop evolution : 
ejection of a tail, reduction of the drop into a nearly steady ring, and filamentation. 
Entrainment of ambient fluid was observed for both oblate and prolate per- 
turbations. This is in contrast with results of linear theory, but in agreement with the 
observations of Kojima et al. (1984). Our nonlinear analysis was not able to explain 
all stages in the drop evolution reported by Kojima et al. (1984) and, in particular, 
the flattening of the rear of the drop for prolate perturbations, and the expansion of 
the developed drop ring. It appears that  inertial effects are important during these 
stages of the motion. 

Several authors have performed numerical studies of drop and cell deformations 
using the boundary-integral method for the specific case of fluids with equal 
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FIQURE 1 1 .  Characteristic stages in the evolution of an oblate drop with E =‘-0.300, for viscosity 
ratio h = 1.0 and different magnitudes of the surface tension (a )  r= 0, t = 68.70, ( b )  r= 0.050, 
t = 62.00. 

viscosity, h = 1 (Rallison 1984; Zinemanas & Nir 1988). This choice is motivated by 
the resulting simplifications in the numerical procedure, as discussed in $2.3. Our 
computations show that h may have a significant effect on the qualitative features 
of the evolution, and suggest reconsideration of the problems studied by the above 
authors for general values of the viscosity ratio. 
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Appendix A 
In  this appendix we show that the homogeneous integral equation (2.16b), where 

/3 and q are complex, may have only real eigenvalues with 1/31 2 1. In our proof, we 
trace the steps of the corresponding theory for potential flow (Bergman & Schiffer 
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1953, p. 172), Thus, assuming that q is a solution to (2.16b), we define the complex 
function 

W i ( X o )  = ~ ~ s S i ~ ( X o ,  X) qj(x) a l x ) .  (A 1) 

This represents a continuous velocity field induced by a distribution of Stokeslets. 
The corresponding surface stress experiences a discontinuity of magnitude 2q across 
S. The limiting values of the surface stress on either side of S are given by 

( g i k f i k ) *  (xO) = - ( * ) p q i ( x O ) + G ' k ( x O )  % j k ( X O , X ) q j ( x ) d s ( x ) ,  (A 2, s:" 
where the plus sign is for the external, and the minus sign for the internal, side of S.  
Combining (2.166) and (A 2) we obtain 

(A 3) (g ik  ' k ) *  = -p( k 1 - l / p )  q i .  

where e = t[Vw+ (Vw)'] is the rate of deformation tensor, Q is the stress tensor 
corresponding to the flow w, and an asterisk indicates the complex conjugate 
(Ladyzhenskaya 1969, p. 53). Inserting (A 3) into (A 4a,b) we obtain 

e ik  e,*, d V  = -(I/@- 1)  Js+-: *ids, 2.1=v+ 
eik e& d V  = ( l/p + 1 )  Js- w: pi ds. Iv- 

(A 5a) 

(A 5b) 

The integrals on the right-hand side are identical, for w is a continuous function. 
Adding the above equations, and noting that the integral on the left-hand side is real 
and non-negative, indicates that the integral on the right-hand side is real and non- 
negative as well. As a consequence, p must be real. Furthermore, multiplying (A 5a) 
by (A 5b) side by side, we obtain p' 2 1 which is the desired result. 

Appendix B 

introduced in the paper. 
The matrix M is defined as 

In this appendix we give the defining expressions for the various matrices 
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The matrix p is defined as 

Pll = q211, P 1 2  = 92123 P 2 1  = - 6 u ~ ( 8 2 1 5 2 + a ~ I ~ 0 - 2 a 8 0 1 5 1 ) ,  

p 2 2  = - 6 a ( 8 3 1 5 2 - a ~ 1 5 1 - a 2 a o ( 1 5 , + 2 1 5 1 )  + a ~ ; ( I 5 0  +U52)). 

The matrix h is defined as 

hlll = 9111, h112 = q211, h121 = 9121, h211 = 9211, 

h122 = q212, h221 = q221, h212 = P 2 1 ,  h22z  = P 2 2 .  

In all of the above, 

where 

The last integral may be expressed with the aid of standard tables in terms of 
complete elliptic integrals of the first and second kind (Gradshteyn & Ryshik 1980, 
$2.58). 
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